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The Interaction between Solar Convection and Rotation
Haibin Chen (陈海彬) and Rong Wu (吴蓉)

ABSTRACT
The rotational energy of a fluid parcel changes during isotropic expansion or compression. In solar

convection, rotation absorbs energy from convection and inhibits it, causing the motion of fluid parcels
larger than a critical size to become vibration. Turbulence and inertial oscillations can cause the
deformation of fluid parcels to deviate from isotropic, altering the equilibrium position of the vibration
and forming motion larger than the critical size, respectively, the large granules within the granules
and probably the mesogranulation.

The change in rotational energy of granules during convection causes their rotation speed to differ
from the local speed, forming a statistically significant solar radial differential rotation. The meridional
circulation driven by radial differential rotation transports angular momentum towards the equator,
forming the latitudinal differential rotation.

A model constructed by combining mixing length theory explains why granule size and temperature
distribution are independent of latitude, and the structure produced by this mechanism is similar to
the characteristics of supergranules.

Keywords: convection，Sun: rotation，Sun: granulation，Sun: oscillations

1. INTRODUCTION
There are still many unresolved issues regarding gran-

ules, mesogranules, supergranules,(Rast 2003) and solar
differential (Paternò 2010).

Granules have been shown to be of convective ori-
gin(Unsöld 1930) (Richardson & Schwarzschild 1950),
and they can be classified into small and large granules
based on a diameter of approximately 1”37(Roudier &
Muller 1986), with significantly different number dis-
tributions, fractal dimensions, and brightness distribu-
tions between them(Hirzberger et al. 1997). However,
there is still no widely accepted explanation for this phe-
nomenon.

The origin of mesogranules (November et al. 1981)
is even debated. Mesogranular intensity fluctuations
are reported to have correlations with vertical velocity
consistent with convection(Deubner 1989)(Straus et al.
1992).

Supergranules are primarily composed of horizontal
motions(Hart 1954)(Leighton et al. 1962), with en-
hanced spectral intensity at cell boundaries(Beckers
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1968)(Frazier 1970), suggesting that they may not be
of convective origin.

The equatorial rotation rate of the Sun is faster than
that at the poles(Maunder & Maunder 1905)(Newton
& Nunn 1951)(Weiss 1965)(Gilman 1974). Most the-
oretical explanations for this phenomenon have failed,
and simulations are now commonly used to explain
it(Paternò 2010).

In our study of differential rotation, we have found
that rotation can inhibit convection(Chen & Wu 2022a).
Representing changes in rotational energy as equiva-
lent temperatures can facilitate understanding and re-
search(Chen & Wu 2022b). However, this does not ex-
plain the following questions: why large granules ex-
ceeding a critical scale can exist and exhibit turbulence-
like characteristics, how mesogranules and supergranules
form under the inhibition of rotation, why the size of
granules and temperature(Kuhn et al. 1988)(Willson &
Hudson 1988)(Hoyt & Schatten 1993) at the solar poles
and equator are so similar, and how solar differential
rotation extracts energy from granular convection and
forms.

2. ROTATIONAL EQUIVALENT TEMPERATURE
The rotation of a fluid alters its pressure distribution.

For typical shapes such as spheres, cylinders, and cubes,
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rotation generally increases their surface pressure. As
an example, consider a fluid cylinder rotating about its
axis of symmetry at a speed of Ω, with a radius of l and
a height of 2l, and a fluid density of ρ. The average
increase in surface pressure due to rotation is given by:

p̄Ω = 1
6ρΩ2l2 (1)

The change in pressure distribution caused by rotation
raises a question: when the shape of the fluid changes,
does the rotational energy also change? For instance, in
the most typical isotropic expansion process, density, ro-
tational speed, and rotational pressure all vary with the
radius l, and there is a correlation between them. The
relationship between rotational pressure and density is:

dp̄Ω

p̄Ω
= 2

3
dρ

ρ
(2)

This relationship is similar to that between gas pressure
and density with a degree of freedom of 3. Therefore,
the effects of rotation can also be described using an
equivalent rotational temperature, which facilitates the
inclusion of rotational energy effects in convection crite-
ria. Following the gas state equation, let p̄Ω = ρ Rm

Mm
TΩ.

The equivalent rotational temperature is then:

TΩ = Mm

6Rm
Ω2l2 (3)

For different shapes and axes of rotation, such as
spheres, squares, or cylinders with axes of rotation that
are not symmetric, the coefficients of additional pres-
sure and equivalent temperature generated by rotation
differ. Let:

TΩ = kΩ
Mm

Rm
Ω2l2 (4)

Where the value of kΩ depends on the shape and axis
of rotation, and can be calculated based on changes in
rotational energy during isotropic expansion.

In fluid mechanics, the pseudo-vorticity energy ω2

2 is
used to describe the intensity of fluid rotation in a cer-
tain region, and Ω2

8 is equivalent to pseudo-vorticity
energy. In the formula, Ω =

∣∣∣Ω⃗∣∣∣ is a scalar describ-
ing the magnitude of the fluid parcel’s rotational speed.
In rotating bodies like the Sun, using rotational speed
is more intuitive and convenient than using vorticity,
and it avoids conceptual pitfalls, allowing us to perform
seemingly unreasonable operations without psychologi-
cal burden but still obtain results that align with ob-
served data.

The rotation of fluid parcels affects their deformation
through inertial oscillations, and the magnitude of the

response period is the same as the Sun’s rotation period
T0. There is a difference of 4-5 orders of magnitude
between the existence time of granulation and T0, so it
can be considered that the expansion and compression of
granules have not yet been affected by rotation, and are
statistically close to isotropic. The equivalent rotational
temperature performs well in this context. However, for
mesogranules and supergranules, the effects of inertial
oscillations need to be considered.

3. CONVECTION CRITERION IN THE SOLAR
CONVECTION ZONE

Under normal conditions, we can use the
Schwarzschild convection criterion to determine whether
convection will occur spontaneously:∣∣∣∣dT

dR

∣∣∣∣
rd

>

∣∣∣∣dT

dR

∣∣∣∣
ad

(5)

Where
(

dT
dR

)
rd

is the temperature gradient of the fluid
along the solar diameter, and

(
dT
dR

)
ad

= (γ − 1) T dρ
ρdR is

the adiabatic temperature gradient.
In solar convection, for spherically symmetric expand-

ing (compressing) fluid parcels, when considering the
influence of rotational energy considerations, the con-
vection criterion becomes:∣∣∣∣dT + dTΩ

dR

∣∣∣∣
rd

>

∣∣∣∣dT + dTΩ

dR

∣∣∣∣
ad

(6)

Similarly,
(

dTΩ
dR

)
ad

= 2
3 TΩ

dρ
ρdR represents the change

in TΩ during the spherically symmetric expansion of a
fluid parcel that is not affected by viscosity. We note
that in this process, when the relationship dΩ

ΩdR = 2dρ
3ρdR

is satisfied, the fluid parcel satisfies the relationship(
dTΩ
dR

)
rd

=
(

dTΩ
dR

)
ad

, which can be used to describe the
adiabatic temperature gradient of the rotational equiv-
alent temperature.

(
dTΩ
dR

)
rd

is the rotational equivalent
temperature gradient during the motion of the fluid par-
cel, which can be expressed using the rotational speed
gradient. Under the same rotational speed gradient, it
is proportional to the square of the fluid parcel size l,
so the convection criterion is affected by the size of the
fluid parcel.

In the solar convection zone, generally, the temper-
ature gradient satisfies the convection criterion, i.e.,∣∣ dT

dR

∣∣
rd

>
∣∣ dT

dR

∣∣
ad

, but the rotational speed gradient does
not satisfy the convection criterion. In most regions of
the solar convection zone,

∣∣ dT
dR

∣∣
rd

<
∣∣ dT

dR

∣∣
ad

. In this case,
the size l of the fluid parcel can determine whether its
own motion is promoted or inhibited. The critical size
lad satisfies:

l2
ad =

−T
(

dT
T dR − (γ − 1) dρ

ρdR

)
2kΩMm

Rm
Ω2
(

dΩ
ΩdR − 2

3
dρ

ρdR

) (7)
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The convection criterion is:

l < lad (8)

This convection criterion only holds for spherically sym-
metric expanding or compressing fluid parcels. When
the size of the fluid parcel satisfies the convection crite-
rion, the fluid parcel is in a state of natural convection.
When l > lad, the motion of the fluid parcel is inhibited.

From the perspective of energy flow, thermal energy
flows from high-density regions to low-density regions,
accompanied by energy release. Rotational kinetic en-
ergy flows from low-density regions to high-density re-
gions, which is an energy absorption process. Moreover,
the larger the fluid parcel, the more energy per unit mass
it absorbs. When the size of the fluid parcel is l = lad,
the release of thermal energy and the absorption of ro-
tational kinetic energy reach a balance.

The theory of rotational equivalent temperature can
solve the formation and distribution of small granules in
granules to a certain extent, but it raises a large number
of new questions:

1. Structures of the size of large granules within gran-
ules, mesogranules and supergranules should be in a
state of oscillation according to this theory. Why can
they form motions?

2. A portion of the energy in convection is converted
into the rotational kinetic energy of fluid parcels. Are
they related to the formation of solar differential rota-
tion?

3. The speed of solar rotation decreases significantly
in high-latitude regions. According to this theory, the
size of granules should also increase significantly, but
observations show that there is no significant difference
in granule size along the latitude. What causes this?

The establishment of new theories requires us to im-
mediately address the above issues, so next, we will pro-
vide a simple and reasonable explanation for them.

4. VIBRATION DOMINATED BY ROTATION
In the solar convection zone, when the size of a spher-

ically symmetric deformed fluid parcel exceeds the crit-
ical size l > lad, the equation of motion for the fluid
parcel has solutions in the form of vibrations. We hope
to obtain the specific equation of motion, which serves
as a validation of previous inferences and is necessary
for studying the motion of other structures.

Based on the ideal gas law p = Mm

Rm
ρT , the equation

of state for a rotating fluid parcel can be written as:

p + p̄Ω = Mm

Rm
ρ(T + TΩ) (9)

After the fluid parcel rises and expands, the pressure
remains in equilibrium with the surrounding fluid. The

difference in density between the fluid parcel and its
environment is given by:

∆ρ = −ρ
∆T + ∆TΩ

T + TΩ
(10)

The motion of the fluid parcel is driven by the difference
between gravity and buoyancy:

d2R

dt2 − ∆ρ

ρ
g = 0 (11)

Upon rearrangement, we obtain:

d2R

dt2 +
T
(

2
3

dρ
ρdR − dT

T dR

)
+ 2TΩ

(
2
3

dρ
ρdR − dΩ

ΩdR

)
T + TΩ

gδR = 0
(12)

Where δR = R − R0 and R0 is the equilibrium position.
Letting λ2 = − T( 2

3
dρ

ρdR − dT
T dR )+2TΩ( 2

3
dρ

ρdR − dΩ
ΩdR )

T +TΩ
g, the so-

lution to the equation is:

δR = C1eλt + C2e−λt (13)

Where TΩ varies with the size of the fluid parcel l and
affects the value of λ. The value of λ can be expressed
in terms of l as:

λ2 = −
2 TΩ

l2

(
2
3

dρ
ρdR − dΩ

ΩdR

)
(l2 − l2

ad)

T + TΩ
g (14)

When the size of the fluid parcel l < lad, λ2 > 0, and
the solution to the equation is an exponential function
depending on the initial conditions, similar to the state
of thermal convection. When l > lad, the equation has
solutions in the form of vibrations. This is a specific
manifestation of the convective criterion considering the
equivalent rotating temperature.

In particular, when l ≫ lad, we have:

λ ≈

√
−2
(

2
3

dρ

ρdR
− dΩ

ΩdR

)
g (15)

This can be used to estimate the vibration period tvib

associated with structures of scales such as mesogranules
and supergranules.

Among these, we can let dΩ
ΩdR ≈ 0 and gs =

−274.m/s2. The density distribution of the solar con-
vection zone can be simply approximated as ρ ≈

Cρ

(
R⊙
R − 1

) 1
γ−1 , where Cρ = 0.6g/cm3 and γ = 5

3 . The
results obtained agree with more accurate solar models
within ±10%. We find that dρ

ρdR = − 3
2

R⊙(
R⊙

R −1
)

R2
≈

− 3
2

1
(R⊙−R) . If the shallowest depths of mesogran-

ules and supergranules are the same as their radii,
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i.e., (R⊙ − R) is taken as 3Mm and 16Mm respec-
tively(Rast 2003), then the minimum vibration period
of mesogranules is about 7.7min, and that of supergran-
ules is about 18min. Their typical vibration periods are
shorter than their lifetimes, suggesting that their motion
may be a shift in equilibrium position. The vibration pe-
riod of large granules is significantly affected by l and
is close to 5min. This period is similar to the observed
5min solar oscillation(Leighton et al. 1962)(Unno et al.
1989)(Scherrer et al. 1995), indicating that rotation-
dominated vibrations may be an important entry point
for helioseismic research.

If it is assumed that there is an exchange of thermal
energy between the fluid parcel and the external envi-
ronment, the equation of motion for a fluid parcel with a
size l > lad has a solution with excited vibrations. Large
granules are the smallest moving structures with vibra-
tional patterns, and thermal exchange occurs rapidly, so
excited vibrations are more pronounced in large gran-
ules.

5. LAGE GRANULES AND THE EQUILIBRIUM
POSITION JUMP GENERATED BY

TURBULENCE
We now investigate the motion and characteristics of

large granules within granules.
The stretching of fluid parcels by turbulence leads to

variations in the rotation rate Ω, altering the TΩ of the
fluid parcel. The equilibrium position jumps to anther
place , and the distance of this jump is primarily de-
termined by the change in Ω and is also influenced by
temperature gradients. This will cause the fluid parcel,
which is initially at rest, to move. This change is re-
flected in the equation of motion δR = C1eλt + C2e−λt,
where significant modifications occur to the coefficients
C1 and C2 even with small variations in λ.

Fluid parcels with size l < lad are in an unstable equi-
librium state. The jump in equilibrium position is equiv-
alent to a relatively strong disturbance to the thermal
convection, promoting its formation.

Fluid parcels with size l > lad are in a stable equi-
librium state. After the jump in equilibrium position,
the originally stationary fluid parcel begins to oscillate
around the new equilibrium position, forming a large
granule. The distance of the jump in equilibrium po-
sition is amplified by temperature gradients, and the
closer the size is to lad, the greater the amplification.
Large granules can form excited oscillations with the in-
volvement of thermal transport.

New thermal convection can also be generated within
a large granule, which may roughen the boundaries
of fluid parcels. Thermal convection and oscillation

can even be relatively independent, and in some cases,
changes in the direction of motion during oscillation may
be interpreted as the fragmentation of large granules.
This explains why the fractal dimension of large gran-
ules is significantly greater than that of small granules.
Due to its oscillatory motion, it exhibits notably dif-
ferent characteristics compared to thermal convection.
For example, its brightness is primarily related to the
amplitude of oscillation and not to its size.

The jump distance of the equilibrium position of
large granules affects the amplitude of oscillation. It is
strongly influenced by the turbulence energy spectrum,
and the amplitude of larger granules is almost entirely
controlled by the turbulence energy spectrum. This may
make its energy spectrum closely resemble that of tur-
bulence.

6. THE INERTIAL OSCILLATION AND THE
MOTION GENERATED BY THE SHIFT OF

THE EQUILIBRIUM POSITION OF THE FLUID
PARCELS

When studying solar granulations, we consider their
expansion and compression to be statistically close to
spherically symmetric. However, when the magnitude
of the existence time of fluid parcels approaches the so-
lar rotation period, such as in mesogranulations and su-
pergranulations, the imbalance of pressure within the
fluid parcels can cause anisotropic deformation, known
as inertial oscillation. At this point, the deformation of
the fluid parcels is no longer statistically isotropic, and
the equilibrium position of their vibration is influenced
by non-spherical symmetric deformation. Since the vi-
bration period of the fluid parcels is much smaller than
the period of inertial oscillation, the movement speed of
the equilibrium position R0 can represent the average
motion speed of the fluid parcels.

According to the characteristics of inertial oscillation,
the period T of inertial oscillation of fluid parcels should
be close to half of the period T0 of the rotating sys-
tem. During the process of inertial oscillation of fluid
parcels, assuming uniform internal rotation rate denoted
as Ω, and the environmental fluid rotation rate as Ω0,
the natural angular frequency of undamped vibration is
ωn = 2Ω0. Based on the conservation of angular mo-
mentum and the change in radius perpendicular to the
axis of rotation of the fluid parcels, the equation for the
change in rotation rate of the fluid parcels can be derived
as:

∂2Ω
∂t2 + 2ζωn

∂Ω
∂t

+ ω2
n(Ω − Ω0) = 0 (16)

where ζ is the damping ratio, mainly caused by the prop-
agation of inertial waves. If ∂Ω

∂t is small, this term can
be neglected.
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According to the equation of motion for fluid parcels,
at any time t during the motion of fluid parcels, the
rotation rate of the fluid parcels is Ω, the environmental
fluid rotation rate is Ω0, and the fluid parcels are in a
state of forced vibration equilibrium at position R0 with
δρ = 0. This leads to the equation:

∆TΩ + ∆T = 0 (17)

This implies that there exists a rotational speed differ-
ence between the fluid parcels and the environment de-
termined by ∆T :

∆Ω = Ω − Ω0 = − ∆T

2kΩ
Mm

Rm
Ωl2

(18)

The rotational speed difference gives rise to inertial os-
cillations in the fluid parcels, resulting in anisotropic
deformation and changes in rotational speed. Denoting
the change in rotational speed caused by inertial oscil-
lations as ∂Ω

∂t , initially, ∂Ω
∂t is small and varies little with

density. Neglecting damping effects, the equation for
rotational speed oscillations of the fluid parcels can be
simplified to:

∂2Ω
∂t2 + ω2

n∆Ω = 0 (19)

Substituting the equation for rotational speed difference
and integrating, we obtain:

∂Ω
∂t

=
∫ t

0

ω2
n∆T

2kΩ
Mm

Rm
Ωl2

dt (20)

The change in rotational speed caused by inertial oscil-
lations, ∂Ω

∂t , leads to a change in the equilibrium position
of forced vibration, R0. At time t + dt, the fluid parcels
reach a new equilibrium position R∗

0. Within the time
dt, both density changes and inertial oscillations within
the fluid parcels affect their rotational speed, and ro-
tational speed gradients affect the rotational speed of
the environmental fluid. At the new equilibrium posi-
tion R∗

0, the rotational speed difference between the fluid
parcels and the environmental fluid is given by:

∆Ω∗ = Ω∗ − Ω∗
0

= (Ω + ∂Ω
∂t

dt + 2
3Ω ∂ρ

ρ∂R

∂R0

∂t
dt) − (Ω0 + ∂Ω

∂R

∂R0

∂t
dt)

(21)

where the term ∂Ω
∂t dt represents the change in rotational

speed caused by anisotropic deformation of the fluid
parcels, related to rotational speed oscillations; the term
2
3 Ω ∂ρ

∂R
∂R0
∂t dt represents the change in rotational speed

caused by isotropic deformation of the fluid parcels, re-
lated to density changes; and the term ∂Ω

∂R
∂R0
∂t dt repre-

sents the change in rotational speed of the environmen-
tal fluid, related to rotational speed gradients. The ro-
tational speed difference ∆Ω∗ between the fluid parcels
and the environment is determined by ∆T .

Combining the above equations, we obtain:

∂R0

∂t
=

∂Ω
∂t

∂Ω
∂R − 2

3 Ω ∂ρ
ρ∂R

=

∫ t

0
ω2

nδT

2kΩ
Mm
Rm

Ωl2 dt

∂Ω
∂R − 2

3 Ω ∂ρ
ρ∂R

= K

∫ t

0

δT

l2 dt

(22)
Where, K = ω2

n

2kΩ
Mm
Rm

Ω2( ∂Ω
Ω∂R − 2

3
∂ρ

ρ∂R ) Taking the derivative
of the above equation, we get:

∂2R0

∂t2 = K
δT

l2 (23)

This is the equation of motion for a convective structure
with a size significantly larger than the critical scale dur-
ing its initiation phase. The coefficient K depends on
the system’s parameters. It should be noted that this
equation does not include the term for gravitational ac-
celeration because the focus of this problem is on the
rotational oscillation of fluid parcels. Gravity only as-
sists in creating a rotational difference between the fluid
parcels and their environment through the temperature
difference δT and helps the fluid parcels reach a new
equilibrium position in the subsequent process, main-
taining the existence of the rotational difference.

Since the oscillation periods of mesogranules and su-
pergranules are generally much shorter than their life-
times and inertia oscillation periods, the equation of
equilibrium position change may represent their equa-
tion of motion.

7. SIZE OF MOVING FLUID PARCELS
GENERATED BY INERTIAL OSCILLATIONS

The diameters of supergranules concentrate around
32Mm, while those of mesogranules concentrate around
7Mm. The motion induced by inertial oscillations may
be one of them, and we can attempt to analyze the rea-
sons for their concentrated size distribution.

In the equation of motion for mesogranules or super-
granules, the environmental parameter K depends only
on the environment and is a given parameter. By sup-
plementing the equation with the temperature difference
δT between the fluid parcel and the environment and the
size l of the fluid parcel, their motion can be solved.

If the fluid parcel does not disintegrate or add matter
during its motion, then the mass of the fluid parcel is
conserved, and the size l of the fluid parcel satisfies the
relationship:

l3ρ = l3
0ρ0 (24)

The temperature difference δT between the fluid par-
cel and the environment is related to heat conduction.
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Under conditions of sufficient heat conduction or adia-
batic conditions, δT can be easily solved.

Let κ be the heat conduction coefficient including
heat conduction and turbulent heat transfer. When
l ≫ 4

√
κt, the heat transport process can only affect

the area near the boundary of the fluid parcel within a
range of 4

√
κt, and the fluid parcel can be considered

adiabatic. Let R00 be the initial equilibrium position,
and δT satisfies the relationship:

δT =
(

∂T

∂R
− (γ − 1)T ∂ρ

ρ∂R

)
(R00 − R0) (25)

So when l ≫ 4
√

κt, the equation of motion for the equi-
librium position is:

∂2R0

∂t2 =
K
(

∂T
∂R − (γ − 1)T ∂ρ

ρ∂R

)
(R00 − R0)

l2
0

(
ρ0
ρ

)2/3 (26)

In this equation, apart from l2
0 and the initial position

R00 of the fluid parcel, the other parameters are all envi-
ronmental. For fluid parcels generated simultaneously in
the same region, the smaller their size l, the greater their
acceleration. After a period of time, the displacement
and δT become relatively large, which inhibits the mo-
tion of larger fluid parcels. Therefore, when l ≫ 4

√
κt,

fluid parcels tend to have smaller sizes l.
When 4

√
κtvib ≪ l ≪ 4

√
κt, the heat transport dur-

ing the equilibrium position movement is sufficient, and
the heat conduction process has not yet destroyed the
vibration process. In this case, δT satisfies:

δT = K2l2v (27)

where v is the velocity of the fluid parcel’s equilibrium
position movement, and K2 is determined by the shape
of the fluid parcel and environmental parameters. The
equation of motion for supergranules is:

∂2R0

∂t2 = KK2
∂R0

∂t
(28)

It can be seen that the velocity of the fluid parcel’s mo-
tion is independent of its size. However, for fluid parcels
generated simultaneously in the same region, the larger
l is, the greater δT becomes, which inhibits the mo-
tion of relatively smaller fluid parcels. Therefore, when
l ≪ 4

√
κt, fluid parcels tend to have larger sizes l.

In summary, the radii of fluid parcels tend to concen-
trate around 4

√
κt.

Observations show that in addition to granulation,
there are two convective structures in the sun that are
significantly larger than granules: mesogranules and su-
pergranules. The above model can only explain the for-
mation of one of these structures. Supergranules mainly

move horizontally, while mesogranules have significant
convective characteristics. Therefore, we suggest that
mesogranules may be caused by the movement of oscil-
lating equilibrium positions.

8. MECHANISM OF RADIAL DIFFERENTIAL
ROTATION

The rotation traps a portion of the energy from ther-
mal convection and suppresses it, which causes the rota-
tion rate of fluid parcels to differ from the local rotation
rate. A large number of fluid parcels with different ro-
tation rates can form a statistical difference in rotation
rates, known as differential rotation.

To analyze this more specifically: when a fluid parcel
moves outward along the solar diameter, it expands and
its rotation rate decreases. When it moves inward along
the solar diameter, it compresses and its rotation rate
increases. Therefore, the rotation rate of fluid parcels at
the top of the convection zone is lower than that at the
bottom.

Next, let’s analyze the radial distribution of fluid par-
cel rotation rates. Ignoring the effects of viscosity on
fluid parcel rotation, and assuming that the existence
time of fluid parcels is significantly less than the so-
lar rotation period and that the fluid parcels have not
disintegrated, the rotation rate of fluid parcels is only
related to the initial rotation rate Ω0, initial density ρ0,
and current density ρ. That is,

Ω = Ω0(ρ/ρ0)2/3 (29)

After sufficient mixing, the average rotation rate of fluid
parcels in a region is related to the average density and
rotation rate of the source region of the fluid parcels,
which is given by

Ω = (
n∑

i=1
Ωi(ρ/ρi)2/3)/n (30)

In the edge region of the convection zone, fluid parcels
mainly come from inside the convection zone, and there
are significant differences in the average density between
the source region and the local region. For example,
fluid parcels at the top of the convection zone come from
regions with higher densities inside the convection zone,
so the rotation rate of fluid parcels at the top of the con-
vection zone is lower, and correspondingly, the rotation
rate of fluid parcels at the bottom of the convection zone
is higher. If we know the radial distribution of the free
path of fluid parcels, we can calculate the above formula.

The different radial rotation rates of fluid parcels can
form a statistical velocity difference. The rotation of
fluid parcels and their irregular translation are relatively
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independent. In cylindrical coordinates (r, θ, z), let the
statistical velocities along the θ direction generated by
the translation and rotation of fluid parcels be vθta and
vθro, respectively. The statistical velocity along the θ

direction vθ is given by

vθ = vθta + vθro (31)

In general, if irregular motion dominates, we have vθta =
Ω0r, where Ω0 is a fixed rotation rate. If the rotation
rates of all fluid parcels are the same, then vθro = 0.
Combining these, we can obtain a solution without dif-
ferential rotation, vθ = Ω0r. Most previous models at-
tributed differential rotation to vθta because the irregu-
lar motion of fluid parcels in turbulence can be destroyed
by the dynamics of thermal convection, but the calcu-
lated results did not match observations. In our model,
we believe that radial differential rotation originates
from differences in the rotation of fluid parcels, vθro, and
we can ignore the contribution of vθta to differential rota-
tion. We define their difference as δvθ = vθ−Ω0r ≈ vθro.

When the rotation rates of fluid parcels in different
regions are not the same, vθro is no longer zero. To
simplify the calculation and make the results more in-
tuitive, we approximate each fluid parcel as six particles
located on both sides of three mutually perpendicular
lines passing through the center of the fluid parcel, with
a distance of a from the center. During statistical anal-
ysis, these three lines are parallel to the coordinate axes
of the cylindrical coordinate system (r, θ, z). The outer
particles are located at a radius of (r + l), while the in-
ner particles are located at (r − l). The rotation rate
of the fluid parcel affects the vθro of these two points.
Correspondingly, the vθro of the fluid at position r is
influenced by the rotation rates of fluid parcels at posi-
tions (r + l) and (r − l). The velocity of the fluid parcel
at (r − l) falling onto the point at r is given by

vθro− = lΩ(r−l) (32)

where Ω(r−l) represents the rotation rate of the fluid
parcel located at (r − l). Similarly, we can obtain the
vθro of other points, which is given by

vθro = 1
6(vθr+ + vθr− + 4δvθ0)

= 1
6(lΩ(r−l) − lΩ(r+l)) ≈ −1

3 l2 ∂Ω
∂r

(33)

It should be noted that Ω here refers to the average
rotation rate of fluid parcels, which may differ from the
average rotation rate of the environment. When the
gradient of the average rotation rate of fluid parcels,
∂Ω
∂r , is not zero, the value of vθro is not zero, resulting

in differential rotation. This is the mechanism by which
radial differential rotation occurs in the sun.

9. A SIMPLE MODEL OF RADIAL
DIFFERENTIAL ROTATION

Previously, only the calculation method for the distri-
bution of fluid parcel rotation rates was given, but due
to the complexity of the actual calculations, no specific
distribution was provided. The true distribution of fluid
parcel rotation rates can be obtained through numeri-
cal simulations. However, by using a greatly simplified
model, we can obtain an intuitive and specific distribu-
tion of radial differential rotation that differs from the
real results but can assist in studying the formation of
radial differential rotation on the solar equator.

We construct a thin annular cylinder model with the
z-axis as the axis of symmetry. The radius of the fluid
parcel is l, the thickness of the annular cylinder is 2b,
the inner radius of the annular cylinder is r1 − b, and
the outer radius is r1 + b. There is no restriction in
the z-direction, and the inside and outside of the an-
nular cylinder are filled with compressible fluid. The
boundary of the annular cylinder is set as the convective
boundary. The fluid parcels within the annular cylinder
have convection, manifesting as irregular motion, and
their centers of mass rebound at the boundary. The
fluid parcels outside the annular cylinder have no mo-
tion. Assuming a density gradient of ∂ρ

∂r and to keep
the model within a linear range, we set b ≪ r1 and
∂ρ

ρ∂r b ≪ 1.
If the fluid parcels all originate from the same source,

the distribution of their rotational speeds along the ra-
dial direction of the cylinder simplifies to:

Ω(r) = Ω1

(
ρ(r)
ρ1

) 2
3

(34)

This requires that the fluid parcels in any region have
not undergone substantial disintegration before they are
uniformly distributed throughout the convection zone,
and this process takes significantly less time than the
solar rotation period. In this equation, Ω1 and ρ1 rep-
resent the average rotation rate and density of the con-
vection zone, respectively.

To further simplify the model, we assume that the
change in ρ(r) is small and that the density distribu-
tion is nearly linear. We define δΩ(r) = Ω(r) − Ω1 and
δρ(r) = ρ(r) − ρ1 = ∂ρ

ρ1∂r (r − r1) to obtain:

δΩ(x) =


0 r < r1 − b

2
3 Ω1

∂ρ
ρ1∂r (r − r1) r1 − b < r < r1 + b

0 r > r1 + b

(35)
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As you can see, this is a relatively simple distribution.
Substituting the relationship for differential rotation

and letting v0 = − 2
9 Ω1

dρ
ρdr l2 (where v0 > 0 in the Sun),

we get:

vθro ≈



0 (r < r1 − b − l)

− b−l
2l v0 (r1 − b − l < r < r1 − b + l)

v0 (r1 − b + l < r < r1 + b − l)

− b−l
2l v0 (r1 + b − l < r < r1 + b + l)

0 (r > r1 + b + l)

(36)

80 83 85 95 97 100

−2

0

1

r

v θ
r
o

vθro

Figure 1: Plot of vθro as a function of r, which set l = 1, b = 6, v0 = 1, r1 = 90,
80 < r < 100.

1

Figure 1. radial differential rotation

Statistically, vθro exhibits a strong velocity difference
at the convective boundary, with a thickness approxi-
mately equal to the diameter of a fluid parcel.1

Outside the convective boundary, since there is no
convective transfer of momentum, the distribution of vθ

is arbitrary. Therefore, the velocity difference at the
boundary radii (r1 − b − l) and (r1 + b + l) can be arbi-
trary. Except for the boundary, δvθ = vθ − Ω0r ≈ vθro.

δvθ ≈



v1 (r < r1 − b − l)

− b−l
2l v0 (r1 − b − l < r < r1 − b + l)

v0 (r1 − b + l < r < r1 + b − l)

− b−l
2l v0 (r1 + b − l < r < r1 + b + l)

v1 (r > r1 + b + l)

(37)

This velocity distribution can handle the velocities be-
tween the convection zone and the rigid rotation zone at

different latitudes, especially in the high-latitude region
of the differential rotation layer. It can be seen that the
velocity distribution of radial differential rotation gen-
erally exhibits an n-shape within the convection zone.

Further refining the model can bring the results closer
to observations. For example, considering the free path
of fluid parcel disintegration can set the intermediate
region of the radial rotation distribution to vθro = 0,
resulting in a slightly concave feature and an M-shaped
velocity distribution. Refining the boundary model to
make it a region of rapidly decaying thermal convection
rather than a collision boundary can smooth out the dis-
tribution of radial differential rotation instead of having
sharp transitions.

In regions where the latitude φ is not zero, there is
an angle between the rotation direction of the fluid par-
cel and the radial direction of the Sun. After projecting
onto the direction of the vertical diameter, the distribu-
tion of radial differential rotation can be approximately
expressed as:

δvθ(R, φ) ≈ Ω̄(φ)
Ω̄(0)

δvθ(R, 0) cos φ (38)

Where Ω̄(φ) represents the average rotation rate of the
convection zone at latitude φ and can also be used to
approximate the rotational speed of the convection zone
around the Sun’s axis of rotation.

The radial differential rotation of the Sun is primarily
composed of the rotation of fluid parcels, but after the
fluid parcels disintegrate, they can retain the character-
istics of radial differential rotation. Therefore, a portion
of the radial differential rotation is also attributed to the
irregular motion of the disintegrated fluid parcels.

10. LATITUDINAL DIFFERENTIAL ROTATION
The latitudinal differential rotation is a more signif-

icant phenomenon than the radial differential rotation.
When we project the radial differential rotation onto the
axial direction, we found that the resulting axial differ-
ential rotation is not zero, which causes an imbalance
in the Coriolis force, driving the meridional circulation.
The meridional circulation driven by the Coriolis force
transports angular momentum away from the axis of ro-
tation (cited from the first paper), making the angular
velocity of the fluid outside higher and the inner. This
difference in rotational speed is projected onto the lati-
tude, which is the sun’s latitudinal differential rotation.

Based on the simple model obtained from the radial
differential rotation, a calculable simple model of latitu-
dinal differential rotation can also be further obtained.

The radial differential rotation model is a thin cylin-
der, which simulates the radial differential rotation on
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the sun’s equatorial plane. To study the latitudinal dif-
ferential rotation, the model needs to be changed to a
thin spherical shell model. If it is assumed that the
thickness of the spherical shell is much smaller than the
radius of the sphere, the difference in the distance from
the convection zone at the same latitude to the axis of
rotation can be ignored, and there is no need to repeat-
edly project in the spherical coordinate system and the
cylindrical coordinate system.

The magnitude of the Coriolis force caused by radial
differential rotation is

ac = −2Ω̄ (φ) δvθ (R, φ) (39)

The rotational speed δvθ of the upper and lower bound-
aries of the spherical shell around the sun’s axis of rota-
tion is lower than the average, while the rotational speed
δvθ of the middle region of the spherical shell is higher
than the average, causing an imbalance in the Coriolis
force. This imbalance leads to fluid in the upper and
lower boundary regions moving towards high latitudes,
and fluid in the middle region moving towards low lati-
tudes, forming meridional circulation. Finally, the lati-
tudinal Coriolis force balances with the viscosity of the
meridional circulation. Meridional circulation can affect
radial differential rotation, but in this simplified model,
we ignore it temporarily.

Assuming that the upper and lower boundaries are
free boundaries, and the radial fluid viscosity (includ-
ing molecular viscosity, turbulent viscosity, and thermal
convection) inside the thin spherical shell is µR, the equi-
librium equation of meridional circulation is

µR
∂2vφ

∂R2 + ρac sin φ = 0 (40)

where vφ is the latitudinal velocity, with the positive
direction from low latitude to high latitude.

Letting ε = 2 ρ
µR

(Ω̄(φ))2

Ω̄(0) v
0

cos φ sin φ, the velocity dis-
tribution vφ is required to be symmetric about r1 − b

and continuous. The solution for vφ is

vφ (φ) ≈



− b−l
2l ε (r − r1 + b + l)2 + 2 b−l

l εl2 + C7

(r1 − b − l < r < r1 − b + l)

ε (r − r1)2 − ε (b − l)2 + C7

(r1 − b + l < r < r1 + b − l)

− b−l
2l ε (r − r1 − b − l)2 + 2 b−l

l εl2 + C7

(r1 + b − l < r < r1 + b + l)
(41)

where C7 can be calculated through mass conservation.

The angular momentum transported along the lati-
tude in time dt is:

dL = rdt

∫∫ r1+b+l

r1−b−l

2πrρvφδvθdr

≈ 2πr2ρdt

∫∫ r1+b+l

r1−b−l

vφδvθdr

= −2πr2ρε
Ω̄ (φ)
Ω̄ (0)

cos φv0

(
8
3

(
b − l

l

)2
l3 + 4

3 (b − l)3

)
dt

(42)

The angular momentum transported along the latitude
generates latitudinal differential rotation, and the latitu-
dinal differential rotation generates angular momentum
backflow under the action of viscosity until the total lat-
itudinal angular momentum transport is zero. Letting
the latitudinal viscosity coefficient (including molecular
viscosity and turbulent viscosity) be µφ, we have

µφ
∂Ω̄ (φ)

∂φ
= dL

2πr (2b + 2l) dt

= − rρε

(2b + 2l)
Ω̄ (φ)
Ω̄ (0)

cos (φ) v0

(
8
3

(
b − l

l

)2
l3 + 4

3 (b − l)3

)
(43)

In the formula, the angular velocity of the fluid around
the rotation axis of the Sun and the average angular
velocity of the local fluid rotation are treated as a single
physical quantity, which may lead to some errors, but
they are acceptable. Simplifying, we get

∂Ω̄ (φ)
∂φ

= −ε1
(
Ω̄ (φ)

)3 cos2 φ sin φ (44)

where εφ = rρ
(2b+2l)

2ρ
µR

1
Ω̄(0) v2

0

(
8
3
(

b−l
l

)2
l3 + 4

3 (b − l)3
)

.
Obviously, εφ > 0.

The solution is

Ω̄ (φ) =
√

1/ (Cφ − εφ cos3 φ) (45)

For appropriate values of Cφ and εφ, a comparison with
the observed differential rotation on the sun’s surface
is shown in the figure2.(Howard et al. 1984)(Snodgrass
1984)

The distribution of latitudinal differential rotation ob-
tained by this formula has the same trend as the ob-
served differential rotation distribution, but there are
differences in the specific distribution. This may be due
to the simplicity of the model. A more accurate model
should be based on a more accurate radial differential ro-
tation model, considering the influence of the thickness
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Figure 2. latitudinal differential rotation

of the convection layer and the reaction of meridional
circulation on the radial differential rotation.

The Coriolis force experienced by the rotating fluid
mass may be entirely borne by the inertial oscillation
of the fluid mass itself, and may not drive the differ-
ential rotation. Only the fragments of the fluid mass
after disintegration can constitute the differential rota-
tion, which can drive the meridional circulation. At this
time, the net Coriolis force generated by the radial dif-
ferential rotation and its driven meridional circulation
need to be multiplied by a coefficient much less than 1.

11. MIXING LENGTH THEORY AND
CONVECTIVE LAYER MODEL

According to the new convection criterion, we can
also use other physical quantities to calculate the ra-
dial rotation speed gradient at the top of the convection
zone. Observations show that the size and temperature
of granules do not vary much with latitude, so they can
be treated as constants. Therefore, the relative values of
the radial rotation speed gradients at different latitudes
at the top of the convection zone satisfy the relationship:

Ω2
(

∂Ω
Ω∂R

− 2
3

∂ρ

ρ∂R

)
≈ constant (46)

Observational data shows that the rotation speed Ω de-
creases with increasing latitude, while the radial differ-
ential rotation at the top of the convection zone indeed
increases with increasing latitude. The observational re-
sults are qualitatively consistent with the theory.

This result suggests that the improvement of the new
theory requires the reconstruction of the solar convec-
tion zone model. After introducing the mixing length
theory and assuming that the mixing length is equal to
the size of the fluid parcel l, there is a closed feedback
chain regarding the temperature distribution and gran-
ule size. The feedback chain is shown in Figure.

In this feedback chain, the relationship between the
rotation speed Ω and the granule size l (1) is provided
by the previous context, the relationship between the
granule size l and the temperature distribution T (2)
is given by the mixing length theory, the relationship
between the temperature distribution T and the linear
velocity distribution vθ (3) is controlled by the micro-
meridional circulation and the Coriolis force, and the re-
lationship between the velocity distribution vθ and the
rotation speed gradient ∂Ω

Ω∂R (4) is a simple differential.
However, it is the relationship (4) that has a strong am-
plification effect, which mainly comes from the fact that
the higher-order differential of small-scale structures is
greater than the lower-order, which leads to the mainte-
nance of constant granule size and temperature distribu-
tion under significant changes in Ω at different latitudes.

The specific equations for each relationship are given
below.

According to the mixing length theory, when the con-
vective energy flux remains constant, the relationship
(2) between the granule size l and the temperature gra-
dient is: (

∂T

T∂R
− (γ − 1) ∂ρ

ρ∂R

) 3
2

l ≈ constant (47)

It can be seen that as the granule size increases, the
temperature gradient approaches the adiabatic gradient
when the energy flux remains constant.

The radial temperature difference between different
latitudes can drive micro-meridional circulation, which
can change the radial velocity gradient. This radial ve-
locity gradient can suppress the micro-meridional circu-
lation until the driving force generated by the temper-
ature difference balances the reaction generated by the
radial velocity gradient. Ignoring the effects of viscosity,
we have: ∮

F⃗ · ds⃗ = 0 (48)

Taking the streamline on the boundary as the research
object, when there is a difference in latitude tempera-
ture, the gravity difference received by the region with
a latitude difference of dφ is:

Fg = gdρ (49)

where
dρ = −ρ

dT

T
= −ρ

∂T

TR∂φ
Rdφ (50)

The gravity difference can drive the micro-meridional
circulation, and the direction of the Coriolis force gen-
erated by the micro-meridional circulation is perpendic-
ular to the meridional plane. This can lead to changes
in the radial differential rotation. The direction of the
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Coriolis force generated by this radial differential rota-
tion is on the meridional plane and suppresses the circu-
lation until it balances with the gravity difference. Af-
ter balancing, the circulation velocity depends on the
dissipation of the radial differential rotation by viscos-
ity. When the viscosity is small, the circulation velocity
is also small, but the meridional circulation driven by
the gravity difference can maintain a larger value. This
model is very similar to the drift of charged particles in
a magnetic field under the influence of an electric field.

There are differences in the horizontal Coriolis force
received by the fluid parcels on the upper and lower
boundaries separated by dR, as well as differences in the
Coriolis force on the high and low latitude boundaries.
Their integrals on the loop are:∮ →

Fcod
→
s = 2ρΩ

(
∂δvθ

∂R
dRsinφRdφ + ∂δvθ

R∂φ
RdφcosφdR

)
(51)

After simplification, we obtain:

2Ω
(

∂δvθ

∂R
sin φ + ∂δvθ

R∂φ
cos φ

)
= −g

∂T

TR∂φ
(52)

This is the relationship (2) in the feedback chain. It can
be seen that the latitudinal temperature gradient drives
the micro-meridional circulation, causing additional ra-
dial differential rotation, which consumes energy.

The micro-meridional circulation driven by the latitu-
dinal temperature gradient and the meridional circula-
tion driven by the radial differential rotation are rela-
tively independent, and the angular momentum trans-
ported by the micro-meridional circulation can be ig-
nored.

The relationship between δvθ and Ω or ∂Ω/∂R in rela-
tionship (4) can be handled differently based on different
assumptions. Generally, it can be assumed that the ro-
tational speed difference caused by δvθ is much smaller
than the solar rotation speed Ω0. The rotational speed
perpendicular to the rotation direction only causes a de-
viation in the rotation direction, and it is only necessary
to project the rotational speed onto the rotation direc-
tion for calculation:

Ω ≈ Ω0 + ∂δvθ

∂R
sin φ + ∂δvθ

R∂φ
cos φ (53)

Differentiating, we obtain:

∂Ω
∂R

= ∂2δvθ

∂R2 sin φ + ∂2δvθ

R∂φ∂R
cos φ (54)

This is the relationship (4) in the feedback chain.
The critical size can be considered as the characteristic

size of the fluid parcel. The influence of rotation speed

and rotation speed gradient on the critical size of the
fluid parcel in relationship (1) is given by the previous
context:

l2
ad =

−T
(

∂T
T ∂R − (γ − 1) ∂ρ

ρ∂R

)
2kΩM

Rm
Ω2
(

∂Ω
Ω∂R − 2

3
∂ρ

ρ∂R

) (55)

By combining the four relationships, we can attempt to
calculate the latitudinal temperature distribution.

Construct a thin spherical shell model and assume
that all values of the model are within the linear range.

Relation (1) is differentiated with respect to R∂φ to
obtain the rotational speed in the latitudinal direction,
the rotational speed gradient, and the effect on the size
of granules. In this relationship, the influence of changes
in the temperature gradient is relatively small and can
be ignored.

2 ∂Ω
ΩR∂φ

+2 ∂l

lR∂φ
+ ∂2Ω(

∂Ω
Ω∂R − 2

3
∂ρ

ρ∂R

)
ΩR∂φ∂R

≈ 0 (56)

Relation (2) is differentiated with respect to R∂φ to ob-
tain the temperature gradient changes caused by varia-
tions in granule size in the latitudinal direction.

∂l

lR∂φ
+ 3

2
∂2T(

∂T
T ∂R − (γ − 1) ∂ρ

ρ∂R

)
TR∂φ∂R

= 0 (57)

Combining relations (3) and (4), we have

∂Ω
∂R

= − g

2Ωsinφ

∂2T

TR∂φ∂R
(58)

Incorporating the differentiation of relation (2), we ob-
tain

∂l

lR∂φ
= 3Ω

g
(

∂T
T ∂R − (γ − 1) ∂ρ

ρ∂R

) ∂Ω
∂R

(59)

Incorporating the differentiation of relation (1), we have

2 ∂Ω
ΩR∂φ

+ 6Ω
g
(

∂T
T ∂R − (γ − 1) ∂ρ

ρ∂R

) ∂Ω
∂R

+

∂2Ω(
∂Ω

Ω∂R − 2
3

∂ρ
ρ∂R

)
ΩR∂φ∂R

≈ 0
(60)

The above equation depicts the feedback chain that re-
sults in the latitudinal temperature gradient approach-
ing zero. The first term is determined by latitudinal
differential rotation and is the origin of the problem.
The second term is the rotational speed gradient de-
termined by the latitudinal temperature gradient, and
the third term is the total differential of the rotational
speed, which is the residual effect of the second term.
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Observational results show that, at least at the top of
the solar convection zone, the latitudinal temperature
gradient is close to 0. This means that the second term
in the equation is only a bridge connecting the first and
third terms. The area dominated by a single feedback
chain is small, resulting in higher-order differentials be-
ing much larger than lower-order differentials. This only
needs to prove that the feedback structure is sensitive
to perturbations, and stronger or larger feedback struc-
tures will split into smaller and weaker structures when
subjected to minor perturbations. This type of feed-
back mechanism can be proved to make the latitudinal
temperature gradient tend to zero.

Re-examining relation (3), it can be found that this
is only the simplest final stable state of the feedback
structure, and this state requires viscosity to partici-
pate in dissipation. If the feedback structure extends
infinitely in the θ direction, the feedback structure will
be in an inertial oscillation state, and the oscillation pe-
riod is determined by the rotation period and the shape
of the feedback structure. However, during the oscil-
lation process, the vθ in different regions of the feed-
back structure is not the same, which will cause it to be
torn apart quickly. This spontaneous disintegration will
make the higher-order differentials in the feedback rela-
tionship significantly larger than the lower-order differ-
entials, making the derived relationship consistent with
observations.

The feedback structure has a tendency to disintegrate
spontaneously, which makes it tend to have a smaller
diameter. However, when the diameter of the feed-
back structure is close to the order of magnitude of
the free path of fluid parcels, a large proportion of fluid
parcels spanning different feedback structures will cause
the feedback of the feedback structure to become less
sensitive, and weaker feedback structures can be easily
destroyed by stronger feedback structures. Therefore,
the lower limit of the diameter of the feedback structure
is related to the average free path of granules. The spon-
taneous disintegration of the feedback structure and the
weakening of smaller feedback structures lead to a very
concentrated size distribution of the feedback structure.

Let’s briefly calculate the existence time of the feed-
back structure. The inertial oscillation period is half
of the solar rotation period, which is T0/2. The time
for the structure to reach maximum speed from zero
speed is T0/8π, which can be used as the characteristic
existence time of the feedback structure. The solar ro-
tation period is approximately 27 days, so the existence
time of the feedback structure is about 50 hours. This
magnitude is very close to the existence time of the so-
lar supergranulation structure. The gap between them

may have the following possibilities: 1. The early stage
of evolution is not obvious in observations, or it has not
yet emerged to the surface of the convection zone. 2.
Before the feedback structure reaches its extreme speed,
the range of force application has changed, causing it to
tear ahead of time.

In addition to the existence time, some characteristics
of the feedback structure are also similar to the observed
characteristics of supergranules. The size of granules
in supergranules shows regular differences, which is a
temperature regulation mechanism produced by the ro-
tational speed gradient. This was previously thought
to be caused by magnetic fields. The supergranules
are dominated by horizontal motion and have signif-
icant differences from the convection structure, which
corresponds to the small-scale but relatively high-speed
meridional circulation and differential rotation in the
feedback structure. From an energy perspective, this
model also explains where the energy of the latitudinal
temperature difference goes and where the energy of the
supergranules comes from.

Supergranules can push weaker magnetic fields to
their edges, but if the magnetic field is too strong,
the feedback chain will be broken, causing temperature
anomalies in that region and leading to abnormal feed-
back in nearby regions. This may be one of the mecha-
nisms for the formation of solar activity.

12. CONCLUSION
The rotational energy of a fluid parcel changes dur-

ing isotropic expansion or compression which similar to
temperature. When studying the effect of rotation on
thermal convection, rotational energy can be described
as rotational equivalent temperature.

The gradient of rotational equivalent temperature can
influence thermal convection. Since rotational equiva-
lent temperature is affected by the size l of the fluid par-
cel, the convection criterion is related to l. For isotropic
deforming fluid parcels, those smaller than a critical size
lad are in a convective state, while those larger than the
critical size transition into oscillatory motion.

We have solved the equation of motion for a spheri-
cally symmetric deforming fluid parcel, neglecting vis-
cosity. Fluid parcels larger than the critical size exhibit
excited oscillatory solutions.

The deformation caused by turbulent irregular mo-
tion makes the equilibrium position of vibrating fluid
parcels with l > lad jump to a new place, generating
motion. Thermal convection can also exist within them,
which makes their photometric boundaries rough and
their fractal dimension significantly larger than that of
small granules. They are not normal thermal convec-
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tion, so the relationship between their brightness and
size is different from that of small granules.

Inertial oscillation can affect the rotational speed of
fluid parcels, change the equilibrium position of fluid
parcels in vibration, and form observable motion struc-
tures. After analyzing the movement of the vibrating
equilibrium position, we found that the structural scale
of this movement is concentrated near a certain value.
This structure may be mesogranules.

The rotation of the fluid parcel absorbs energy from
thermal convection, causing its rotational speed to differ
from the environment. We have demonstrated through
a significantly simplified model how a fluid parcel with
a different rotational speed from the environment can
generate radial differential rotation. This model yields
higher speeds in the middle and lower speeds at the top
and bottom of the convection zone, consistent with ob-
servations.

The Coriolis force from radial differential rotation
drives meridional circulation and transports angular mo-
mentum towards the equator, forming latitudinal differ-
ential rotation. Based on the model of radial differential
rotation, we have calculated the formation of latitudinal
differential rotation using a simplified model. Its trend
is close to the observed results.

The distribution of rotation rates, granule sizes, tem-
perature distributions, and micro-meridional circula-
tions constitute a complete feedback chain. This chain
drives the latitudinal temperature gradient to nearly
zero and the granule sizes to be nearly uniform. The life
time and velocity characteristics of the feedback struc-
ture are similar to those of supergranules. The disrup-
tion of the feedback chain by magnetic fields may be one
of the mechanisms for the formation of solar activity.

ACKNOWLEDGMENTS
The data underlying this article are available in the

article and in its online supplementary material. This
paper was translated by AI Wenxinyiyan.

REFERENCES

Beckers, J. M. 1968, SoPh, 5, 309, doi: 10.1007/BF00147143

Chen, H., & Wu, R. 2022a, arXiv e-prints,
arXiv:2207.11990, doi: 10.48550/arXiv.2207.11990

—. 2022b, arXiv e-prints, arXiv:2211.08113,
doi: 10.48550/arXiv.2211.08113

Deubner, F.-L. 1989, A&A, 216, 259

Frazier, E. N. 1970, SoPh, 14, 89, doi: 10.1007/BF00240163

Gilman, P. A. 1974, ARA&A, 12, 47,
doi: 10.1146/annurev.aa.12.090174.000403

Hart, A. B. 1954, MNRAS, 114, 17,
doi: 10.1093/mnras/114.1.17

Hirzberger, J., Vázquez, M., Bonet, J. A., Hanslmeier, A.,
& Sobotka, M. 1997, ApJ, 480, 406, doi: 10.1086/303951

Howard, R., Gilman, P. I., & Gilman, P. A. 1984, ApJ, 283,
373, doi: 10.1086/162315

Hoyt, D. V., & Schatten, K. H. 1993, J. Geophys. Res., 98,
18895, doi: 10.1029/93JA01944

Kuhn, J. R., Libbrecht, K. G., & Dicke, R. H. 1988,
Science, 242, 908, doi: 10.1126/science.242.4880.908

Leighton, R. B., Noyes, R. W., & Simon, G. W. 1962, ApJ,
135, 474, doi: 10.1086/147285

Maunder, E. W., & Maunder, A. S. D. 1905, MNRAS, 65,
813, doi: 10.1093/mnras/65.8.813

Newton, H. W., & Nunn, M. L. 1951, MNRAS, 111, 413,
doi: 10.1093/mnras/111.4.413

November, L. J., Toomre, J., Gebbie, K. B., & Simon,
G. W. 1981, ApJL, 245, L123, doi: 10.1086/183539
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